The Transition from Extrinsic Rewards toward Intrinsic Motivation: The

Role of EdTech

Niaz Makhdum Muhammad Advancing Social Emotional Learning The United States <u>niaz@advancingsel.org</u>

Mitch Schneider The Chicago School of Professional Psychology The United States <u>mschneider@ego.thechicagoschool.edu</u>

> Anthony Ochoa Advancing Social Emotional Learning The United States anthony@advancingsel.org

> Kehsi Iman Wilson Advancing Social Emotional Learning The United States <u>kehiiman@advancingsel.org</u>

> Douglas M. Yau Advancing Social Emotional Learning The United States <u>doug@advancingsel.org</u>

Abstract

More now than any other time in modern history, technology is influencing the education sector all around the globe in unprecedented ways. Technology can have significant impact on students in enhancing their engagement and enabling them to learn and retain more information. Educational technology (EdTech) can also work as the prime force to enhance students' motivation to perform better. Different factors relevant to educational technology, like user-friendliness, users' curiosity for new learning tools, and psychological satisfaction contribute effectively to enhancing students' intrinsic motivation in the long run rather than increasing extrinsic rewards, which are effective for short-term basis. This study investigates the positive role of EdTech on student learning and explores the ways technology can be used to enhance the motivation of learners. This paper also provides an in-depth analysis on how EdTech can successfully help make the transition of students' drive from the receipt of

extrinsic rewards to that of intrinsic motivation, and how that transition can influence students to strive harder and achieve their targets. Useful recommendations have been offered that will help future researchers and EdTech developers to work on tools and applications that will play important roles in enhancing the intrinsic motivation of the learners.

Keywords: Education Technology (EdTech); Motivation; Technology; Extrinsic Rewards; Intrinsic Motivation.

Introduction

With the advancements in information and communication technology, different kinds of smartphones, laptops, tablets, and other digital devices are used extensively as learning tools. Learners are encouraged to use technology to fulfill different purposes such as submitting class assignments, accessing course materials, reading articles related to coursework, communicating with the instructor and with other students, and more.

Teachers are also offering a variety of deeper learning opportunities in classrooms that are equipped with the latest technology. This has helped enhance students' creativity and engagement with the added benefit of making them enthusiastic and passionate in their learning process (Bester, 2013). In these ways, Education Technology (EdTech) has contributed positively to changing the entire teaching and learning system.

Educational technology can also work as the prime force to enhance students' motivation to perform with extrinsic rewards. Areepattamannil et al. (2011) have mentioned that extrinsic rewards like different gaming elements may enhance the motivation to achieve the learners' goal, but it works only for a short period of time. In some cases, extrinsic rewards also have negative impacts. For instance, extrinsic rewards sometimes result in reducing motivation, creativity, and performance (Fang et al., 2013; Xue et al., 2020), or enhancing their disruptive behavior (Bear, 2010). On the other hand, intrinsic motivation, i.e.,

the motivation that comes from within the students supports the use of EdTech on a long-term basis and leads to successful achievements (Lei, 2010). It is also shown that intrinsic motivation with low extrinsic rewards helps improve performance (Lemos & Verissimo, 2014). In this review article, we will discuss the ways for successful transition from extrinsic rewards to intrinsic motivation and the role of EdTech on learners' motivation.

A Brief Overview of Extrinsic Rewards, Intrinsic Motivation, and EdTech

Combination of forces that arouses, continues, and directs particular type of behavior is often called motivation (Shaheen, Perveen, & Malikz, 2013). It is an indispensable factor that inspires individuals to give their best performance and assists in achieving their goals (Vincent & Kumar, 2019). For students, motivation is a persuasive feeling that always offers positivism to them to accomplish an activity or a task to the end and become successful no matter how tough and hard it is (Gopalan et al., 2017).

In the process of learning new knowledge and skills, intrinsic and extrinsic motivation are two major factors that influence student success. However, these two types of motivation do not have the exact same effect on student learning and performance (Lei, 2010). Motivation to engage in an activity for its own sake is known as intrinsic motivation. Intrinsic motivation involves engaging, challenging, and eliciting feelings of pleasure along with satisfaction. It can drive the learning process and outcomes and can also predict academic achievement (Reed & Reay, 2015). As argued by Brophy (2010), students who are intrinsically motivated are more likely to enjoy learning, be actively engaged, and exhibit enhanced persistence, performance, and creativity.

Extrinsic motivation is well-defined as a motivation to participate in an activity based on meeting an external goal, winning a competition, garnering praise and approval, getting payment or receiving an award. Unlike intrinsic motivation, extrinsic motivation is not driven by the desire to involve in an activity for its own sake (Thomson & Jaque, 2017). According to Vincent and Kumar (2019), "Extrinsic motivation refers to behavior that is driven by external rewards such as money, fame, grades, and praise. This type of motivation arises from outside the individual, as opposed to intrinsic motivation, which originates inside of the individual" (p. 484).

At present, different types of extrinsic rewards are being used to enhance the motivation of the students of elementary schools. For instance, gamification is regularly being used inside the classrooms that involves selecting game elements and using these elements for creating a game-like environment to enhance the engagement and motivation of students (Lister, 2015). In most cases, these game elements include badges, leaderboards, or points (Mekler et al., 2013). Some other game elements being used as digital or external rewards include avatars, ranks, feedback, etc. (Lister, 2015).

Educational technology (EdTech) is related to the process of analyzing, developing, designing, implementing, evaluating the instructional environment and learning materials with a view to improving teaching and learning (Ross et al., 2010). EdTech includes the computer, LCD projectors, various software applications, camcorders, scanners, digital cameras, the internet, satellite, interactive TV, audio, video conferencing, artificial intelligence and so on (Kurt, 2015). As argued by King and South (2016), technology in education can help affirm and advance the relationships between students and educators, introduce new approaches to learning and collaboration, and assist in meeting the needs of all learners.

Methods

We conducted a comprehensive literature review of 26 research papers published in reputed journals and conference proceedings in the last 10 years that highlighted issues related to extrinsic rewards, intrinsic motivation, and EdTech. All of the research papers selected for this invited review article are peer-reviewed. Peer-reviewed conference papers were also selected for writing convenience. After carefully analyzing the findings, we summarized the results accordingly. A brief overview of different researchers' findings is presented here. For finding relevant articles, different search terms were used, like motivation and EdTech, technology and motivation, extrinsic rewards, intrinsic motivation, and EdTech, etc.

Results

The results obtained from the analysis of different peer-reviewed articles are summarized in the table below:

Table 1: Research Outcomes	

Author,	Title of Publication	Purpose/Objective of	Method	Results
Year		the Paper	used	
			(Qualitative/	
			Quantitative	
			/Mixed)	
(Lei, 2010)	Intrinsic and extrinsic	To evaluate the benefits	Qualitative	Intrinsic motivation can
	motivation: evaluating	and drawbacks of		promote student learning
	benefits and	intrinsic and extrinsic		and achievement better
	drawbacks from	motivation in relation to		than extrinsic motivation.
	college instructors'	student learning.		
	perspectives			
(Rogstadius	An Assessment of	To find out a novel	Quantitative	Intrinsic motivation can
et al., 2011)	Intrinsic and Extrinsic	approach of extrinsic or		indeed improve the quality
	Motivation on Task	intrinsic motivations to		of workers.
	Performance in	increase the quality of		
	Crowdsourcing	crowd workers' output.		
	Markets			

(Afzal, 2010)	A Study of University	To identify the influence	Mixed	Intrinsically motivated
	Students' Motivation	of students' motivation		students perform much
	and Its Relationship	on their academic		better academically than
	with Their Academic	performance.		students who are
	Performance			extrinsically motivated.
(Areepattama	Intrinsic Motivation,	To examine the	Mixed	Indian immigrant
nnil et al.,	Extrinsic Motivation,	relationships among		adolescents in Canada had
2011)	and Academic	intrinsic motivation,		higher intrinsic motivation
	Achievement among	extrinsic motivation, and		and academic achievement
	Indian Adolescents in	academic achievement		than their peers in India,
	Canada and India	for the Indian immigrant		while extrinsic motivation
		adolescents in Canada.		had a negative predictive
				effect.
(Lemos &	The relationships	Investigating the	Quantitative	Intrinsic Motivation (IM)
Verissimo,	between intrinsic	relationships between		and Extrinsic Motivation
2014)	motivation, extrinsic	student's intrinsic (IM)		(EM) can coexist and are
	motivation, and	and extrinsic motivation		not contradictory. IM is
	achievement, along	(EM) and their effects.		also steadily associated
	elementary school			with better achievement.
(Isiksal,	A Comparative Study	To investigate Turkish	Qualitative	Turkish students had higher
2010)	on Undergraduate	and American		intrinsic scores whereas
	Students' Academic	undergraduate students'		American students had
	Motivation and	academic motivation.		higher extrinsic scores.
	Academic			
	Self-Concept			
	l	l		1

(Chiu &	Culture, motivation,	To assess the impact of	Qualitative	the link between extrinsic
Chow, 2010)	and reading	extrinsic motivation on		motivation and
	achievement: High	reading achievement.		achievement was weaker
	school students in 41			for both boys and girls.
	countries			
(Wormingto,	A person-centered	To document	Quantitative	Both extrinsic and intrinsic
2012)	investigation of	motivational profiles		motivation may enhance
	academic motivation	and their school-related		the student's outcomes
	and its correlates in	correlates among high		
	high school	school students.		
(Hayenga,	Profiles of intrinsic	To identify and evaluate	Mixed	Students with high intrinsic
2010)	and extrinsic	naturally-occurring		motivation coupled with
	motivations: A	combinations of intrinsic		low extrinsic motivation
	person-centred	and extrinsic		received higher grades than
	approach to motivation	motivations		others.
	and achievement in			
	middle school			
(Hung, 2011)	The influence of	To investigate the	Quantitative	Motivation such as
	intrinsic and extrinsic	effects of intrinsic		economic reward may not
	motivation on	motivation (altruism)		be an adequate motivator of
	individuals'	and extrinsic motivation		knowledge sharing.
	knowledge sharing	(economic reward,		
	behavior	reputation feedback and		
		reciprocity) on		
		knowledge sharing.		
(Lee et al.,	The relationship	To study the	Qualitative	To enhance school
2010)	between future goals	relationships between		motivation, teachers should

	and achievement goal	students' future goals		encourage students to adopt
	orientations: An	(FGs) and their		intrinsic AGOs and FGs.
	intrinsic-extrinsic	immediate achievement		
	motivation perspective	goal orientations		
	motivation perspective	-		
		(AGOs).		
(Kong et al.,	The effects of peer	To examine peer	Mixed	An individual player's
2012).	intrinsic and extrinsic	motivational factors		intrinsic and extrinsic
	motivation on MMOG	influencing intention to		motivation have
	game-based	adopt Massively		significantly positive
	collaborative learning	Multilayer Online		influence on
		Game and		their willingness to learn
		technology-based		both individually and
		collaborative learning		collaboratively.
		methods		
(Sheehan,	Associations Between	To test four mental	Quantitative	Integrated motivation had a
2018)	Motivation and Mental	health outcomes in the		negative association with
	Health in Sport: A Test	motivational sequence		anxiety, and intrinsic
	of the Hierarchical	posited using the		motivation had a positive
	Model of Intrinsic and	Hierarchical Model of		association with depressive
	Extrinsic Motivation	Intrinsic regulation and		symptoms.
		Extrinsic Motivation.		
(Hazrati-Via	The effect of	To examine the effect of	Mixed	In addition to motivation
ri et al.,	personality traits on	personality on academic		IQ, learning approaches
2012).	academic	motivation and		and environmental
,	performance: The	academic performance.		variables can influence
	mediating role of			academic performance.
			1	

(Kışoğlu,	An Examination of	To examine motivation	Quantitative	Intrinsic motivation and
2018)	Science High School	of science high school		future occupation (extrinsic
	Students' Motivation	students towards		motivation-career) can
	towards Learning	learning biology and		motivate students more
	Biology and Their	their attitude towards		towards learning biology.
	Attitude towards	biology lessons.		
	Biology Lessons			
(Goodman,	An Investigation of the	To evaluate the	Quantitative	Intrinsic motivation is the
2011)	Relationship between	relationship between		strongest predictor of
	Students' Motivation	university students'		academic performance,
	and Academic	motivation and their		followed by effort.
	Performance as	academic performance.		
	Mediated by Effort			
(Oudeyer et	Intrinsic motivation,	To study the	Mixed	Intelligent tutoring systems
al., 2016)	curiosity, and learning:	bidirectional causal		(Machine Learning,
	Theory and	interactions between		Artificial Intelligence) can
	applications in	curiosity and learning		be designed to accelerate
	educational	and discusses how these		curiosity and learning as
	technologies	interactions can be		learners' brain is
		powered in educational		intrinsically rewarded by
		technology applications.		those novel features.
(Yardimci,	A study of the	To analyze the	Mixed	Problem Based Learning
2017)	relationship between	relationship between the		(using EdTech)
	the study process,	study method, and		more effectively increases
	motivation resources,	motivation resources		students' intrinsic

	problems of nursing	nursing students in		motivation and helps them
	students in different	different educational		to acquire learning skills.
	educational systems	systems in Turkey.		
(Buil et al.	Encouraging intrinsic	To understand how	Qualitative	Business simulation games
2019)	motivation in	business simulation		are effective tools for
	management training:	games used in		motivating and engaging
	The use of business	management training		players as satisfaction of
	simulation games	must be designed to		the psychological needs
		improve motivation,		with business simulation
		engagement, and		games influences players'
		learning.		intrinsic motivation.
(López-Ferná	Motivational impact of	To understand how	Qualitative	Active learning methods
ndez, 2019)	active learning	aerospace engineering		like Project Based Learning
	methods in aerospace	students' motivation		help to develop both
	engineering students	works.		intrinsic and extrinsic
				motivators and thus
				enhance the performance.
(Rockich-Wi	Faculty motivations to	To evaluate the	Quantitative	Intrinsically motivated
nston et al.,	use active learning	relationship between		faculty members to use
2018)	among pharmacy	faculty intrinsic		active learning are more
	educators	motivation, extrinsic		likely to dedicate additional
		motivation, and the		class time to active
		extent of active learning		learning.
		use in the classroom.		
(Chin-Wen	The interactivity of	To find out the effect of	Mixed	Collaborative DGBL
Liao, 2019)	video and	an instructional video		promoted intrinsic
	collaboration for	and collaboration to the		motivation and reduce both

	learning achievement,	learning achievement,		intrinsic and extraneous
	-			
	intrinsic motivation,	intrinsic motivation,		cognitive loads.
	cognitive load, and	cognitive load, and		
	behavior patterns in a	learning behaviors of		
	digital game-based	students within a digital		
	learning environment	game-based learning		
		(DGBL) environment.		
(Chan et al.,	Using an educational	To investigate the effect	Qualitative	Relative to Blackboard and
2016)	computer program to	of an educational		the traditional paper
	enhance student	computer program		medium, PATH leads to
	performance in	Principles Aren't That		highest intrinsic
	financial accounting	Hard (PATH) on		motivation, which
		intrinsic motivation and		increases system use when
		performance in		perceived usefulness is
		accounting education.		higher than lower.
(T.J. Dunn,	Technology Enhanced	To assess the impact of	Quantitative	Intrinsically motivated
2019)	Learning in higher	emotional, cognitive and		students were more likely
	education;	behavioral engagement		to engage with TEL and
	motivations,	with Technology		student-created social
	engagement and	Enhanced Learning		media activity was most
	academic achievement	(TEL) on students'		predictive of grades.
		grades.		
(Partovi &	The effect of	To test the effectiveness	Mixed	The computer educational
Razavi,	game-based learning	of the Game-Based		game improved academic
2019)	on academic	Learnings on the		achievement motivation of
	achievement	academic achievement		elementary students and
	motivation of	motivation of the		thus using computer-based

	elementary school	elementary school		games in elementary school
	students	students		students is necessary.
(Filsecker &	A multilevel analysis	To examine the effects	Mixed	Students with the external
Hickey,	of the effects of	of external rewards on		reward showed
2014)	external rewards on	fifth graders' motivation,		significantly larger
	elementary students'	engagement and		achievements in conceptual
	motivation,	learning while playing		understanding (proximal)
	engagement and	an educational game		and non-significantly larger
	learning in an			gains in achievement
	educational game			(distal).
(Jeno et al.,	The effect of a	To test the effect of the	Quantitative	Mobile-application
2017)	mobile-application	mobile-application on		enhances intrinsic
	tool on biology	students' intrinsic		motivation, perceived
	students' motivation	motivation, perceived		competence and
	and achievement in	competence, and		achievement in species
	species identification	achievement		identification.

Discussion

How Technology Can Enhance Learners' Motivation

As argued by Shin (2012), technology and games yield positive results consistently regarding students' motivation, attention, persistence, and attitude toward learning. When students work on challenging tasks using game technology, their motivation to compete against and improve their own previous scores increases. Technology-based games provide various options that students can choose based on their individual requirements. This can promote positive attitudes toward motivation and learning. For instance, games like the Ripple Effects and the Social Express have been found as effective in enhancing the

self-awareness, self-motivation, cooperation and problem-solving abilities (King & South, 2016).

Another major factor is student engagement. Students are more engaged when simulating activities are associated with reading texts, which is possible by using technology (Gustad, 2014). High level of engagement is always a priority for educators, and technology can significantly help them achieve this. Technology allows students to collaborate with each other easily and gain a deeper understanding of topics that interest them. Furthermore, submitting assignments as blogs, podcasts or videos, different kinds of infographics, virtual learning, etc. can work as the motivating factors for them and enhance their engagement (Gustad, 2014).

As identified by Bester et. al. (2013) learners exposed to technology have significantly higher attention and motivation than those not exposed to technology. A more interactive learning environment can be created by implementing technology. This enables learners to use multi-modalities, which enhances their concentration and motivation to perform better. They further argued that where teachers become successful in capturing the attention of learners using technology, an optimal learning situation is created, and the learners become more motivated to focus on the learning tasks. This also enhances the possibility of higher achievement.

Another important implementation of Educational Technology is Problem Based Learning (PBL) system. It is revealed that PBL and technology fit together seamlessly. Through PBL, students are positively motivated as they are confronted with real-world scenarios. By using technology as a tool, students get the opportunity to become better prepared for the dynamic world in which they live, that help them solve real problems. Yardimci et. al. (2017) reported that Problem Based Learning (using EdTech) educational

system improves nursing students' deep-learning approaches and affects their motivation resources more effectively than other educational systems in Turkey.

Isabel et. al. (2019) mentioned that psychological satisfaction can play a vital role to enhance the student's intrinsic motivation. They addressed that three distinctive psychological needs for competence, autonomy, and relatedness are required to maintain intrinsic motivation. They conducted the study to understand how business simulation games used in management training can be designed to improve motivation, engagement, and learning. They found that business simulation games are effective tools for motivating and engaging players as the satisfaction of basic psychological needs with business simulation games influences players' intrinsic motivation.

When any technology becomes more user-friendly than the conventional method, such as by saving time or reducing cognitive stress, it increases the motivation of the students. Chan et. al. (2016) argued that PATH (a computer program) leads to highest intrinsic motivation, which increases the acceptance of the system to use when individuals perceive that its usefulness is higher. Many people, therefore, claim that technology is the language of this era, so definitely it should be primarily used by the young generation.

Different education apps on smartphones, computers, tablets have been shown to be beneficial for the children as these enhance their engagement to learning (Oudeyer et al., 2016). However, care should be taken to avoid using education technology as a babysitter to capture the children's attention for the sake of passing the time. It is thus a crucial factor to consider the situation of each child and adapt their capabilities to the use of technology so that more effective learning is generated (Yanguas, 2020). Parents also appreciate those approaches as these educational technologies can save their time and effort to teach their beloved kids with higher efficiency (Yanguas, 2020). For instance, an educational app called *Todayit* allows students to keep track of their studies. Furthermore, with the series of

analytics and useful feedbacks provided by this app, students are able to plan their studies better and keep themselves motivated to achieve their goals (Pilcher, 2018). Different game-based apps like VocabTrainerA1 motivate learners and meet their language learning requirements by seamlessly combining individual and collaborative learning tasks (Berns et al., 2016).

However, some other people deeply believe that educational technology can never create the values of discipline, punctuality, and many others which is essential for. They argue that learning does not only associate with receiving information but rather practicing the skills of problem solving and critical thinking, that only live teachers can do (El Miniawi & Brenjekjy, 2015).

How EdTech Can Help Make a Successful Transition from Extrinsic Rewards to Intrinsic Motivation

As mentioned previously, intrinsically motivated students perform much better academically than those who are extrinsically motivated (Afzal et. al., 2010; Areepattamannil et al., 2011; Goodman, 2011). The ways EdTech can successfully help to make the transition from extrinsic rewards to intrinsic motivation needs to be clarified.

Afzal et. al. (2010) concluded that students who are intrinsically motivated perform much better academically than students who are extrinsically motivated. He argued that students who are extrinsically motivated might do a good job or perform better to obtain a certain reward, but it does not last long and cannot keep them motivated in the long run (Afzal et. al., 2010). Their overall performance does not improve consistently. For example, they might perform very well in one semester, one class, or on a short quiz to achieve a certain reward or goal and then next semester might show poor performance if the reward does not exist anymore. Because their performance does not remain constant, it may create a negative impact in their academic career. In contrast, intrinsically motivated students take up tasks or perform well academically for their own interest as well as their own motivation to learn. Such students are really interested in learning the subject or skill which translates to overall long lasting improved performance (Afzal et. al., 2010).

Lemos et. al. (2014) argued that intrinsic motivation consistently enhances performance of students of elementary schools, whereas there exists a negative relationship between student's performance and extrinsic motivation. Interest and curiosity-based learning with intrinsic motives encourages pupils to seek help for learning new materials from the teachers and do school activities complying with the teacher demands. However, extrinsic motives like the desire to achieve good grades or please teachers often have negative relationships with their academic performance (Lemos et. al., 2014).

Different factors relevant to educational technology, like user-friendliness, users' curiosity for new learning tools, psychological satisfaction, and others effectively contribute to enhancing their intrinsic motivation in the long run rather than increasing extrinsic rewards, which are effective for a short-term basis (Areepattamannil et al., 2011). When learners find an educational technology helpful for attaining their goals, then the form of intrinsic motivation enhances markedly. The use of technology in active learning, which includes introducing collaborative project-based learning, in-group problem-solving sessions, use of in-class polling, peer teaching, multimedia content creation, and more can play a big role in enhancing the intrinsic motivation for students. For instance, the use of a classroom response system called 'Clickers' can contribute in improving the learning performance of students by positively influencing collaborative learning, engagement, and motivation (Blasco-Arcas et al., 2013). In this way, EdTech can help students make the transition from extrinsic rewards to intrinsic motivation of the learners to attain success.

Oudeyer et al. (2016) discussed how the brain can be intrinsically rewarded by complexity and novelty. They found that curiosity, and more generally the experience of

surprise and novelty, can enhance memory retention and learning. They also concluded that educational technologies can enhance students' experience of surprise, novelty, and intermediate complexity, and in this way can also enhance their intrinsic motivation to succeed.

Different educational applications on smartphones and tablets have played a major role in enhancing the learners' intrinsic motivation, curiosity, and learning. As argued by Papadakis and Kalogiannakis (2017), various educational applications for kindergarten kids and pre-schoolers motivate them intrinsically to be more involved in their own learning. Consequently, in classrooms where strong extrinsic rewards are offered to the learners for enhancing their motivation, EdTech can be successfully employed to enhance their intrinsic motivation to do better (Oudeyer et al., 2016).

Future Trends and Recommendations

A rapid and fundamental shift in educational practices has been observed in recent years, and this will shape future trends. Widespread adoption of technologies like Artificial Intelligence (AI), software tools, learning analytics, Machine Learning, and different social media applications are regularly being used by the learners and educators, and this trend will continue. AI-driven applications in education are being developed for future platforms and are still in their infancy (Jones, 2020). Endless learning materials will be available for future students, which will also be used to enhance their motivation significantly. It is recommended that more AI-based tools and applications need to be developed that will play important roles in enhancing the intrinsic motivation of the learners.

Considering the present perspectives when teachers are taking classes online due to pandemic, different methods will be followed by them to motivate their pupils to do better in future. Teachers and students will start to use different communication software tools more like Zoom, Google Meet, See Saw, Slack etc. for communication. Also, new institutions will start offering online learning environments that will be welcomed by the students as they will be able to take those courses at their convenience, and also choose courses that interest them. These online platforms will also allow them to learn on their own to satisfy their curiosity and gain new skills. As opined by Hartnett et al. (2011), online learners are intrinsically motivated on the whole, hence it is expected that the online learning environments will enhance student's motivation in future as well. Effective steps need to be taken to make these tools more interactive and user-friendly to meet the needs of the future learners.

For next-generation education, chatbots are quickly becoming a fundamental tool. Chatbots provide a wide range of benefits, including self-paced learning, spaced interval learning, immediate feedback, and are designed to simplify the interaction between students and technology (Jones, 2020). This innovative technology is arming educators with new strategies for more engaged learning while simultaneously reducing their workload. Higher demand for video-based learning will come from students in the near future, even though most institutions are already incorporating video into their curricula in some way. Hence, the researchers and application developers need to come forward and try their best to develop new tools and technology that will meet future needs and will contribute towards enhancing the intrinsic motivation of students in future.

Conclusion

In this era of technological revolution, the use of EdTech is significantly increasing and well appreciated by the learners and teachers. Moreover, the application of the EdTech is no longer considered only for curiosity and fascination, rather it has become an essential part of the educational system. Based on the above discussion, it is evident that the use of EdTech accelerates student's intrinsic motivation and leads to higher academic achievements especially for elementary school students. It is expected that new and innovative tools and

technology will be used to make the learning process more interesting and enjoyable, and simultaneously enhance learner's motivation further in the coming days, which will also lead to better performance.

References

- Afzal, H. A. (2010). A Study of University Students' Motivation and Its Relationship with Their Academic Performance. *International Journal of Business and Management*, 5(4).
- Areepattamannil, S., Freeman, J. G., & Klinger, D. A. (2011, Sep). Intrinsic Motivation, Extrinsic Motivation, and Academic Achievement among Indian Adolescents in Canada and India. *Social Psychology of Education: An International Journal, 14*, 27-39.
- Bester, G. &. (2013). The effect of technology on learner attention and achievement in the classroom. *South African Journal of Education*, *33*(2), 1-15.
- Bear, G. G. (2010). School discipline and self-discipline: A practical guide to promoting prosocial student behavior. Guilford Press.
- Berns, A., Isla-Montes, J. L., Palomo-Duarte, M., & Dodero, J. M. (2016). Motivation, students' needs and learning outcomes: A hybrid game-based app for enhanced language learning. *SpringerPlus*, 5(1), 1305.

Blasco-Arcas, L., Buil, I., Hernández-Ortega, B., & Sese, F. J. (2013). Using clickers in class. The role of interactivity, active collaborative learning and engagement in learning performance. *Computers & Education*, 62, 102-110.

Brophy, J. (2010). Motivating students to learn (3rd ed.). Routledge.

- Buil, I., Catalán, S., & Martínez, E. (2019). Encouraging intrinsic motivation in management training: The use of business simulation games. *The International Journal of Management Education*, 17(2), 162-171.
- Chan, S. H., Song, Q., Rivera, L. H., & Trongmateerut, P. (2016). Using an educational computer program to enhance student performance in financial accounting. *Journal of Accounting Education*, 36, 43-64.
- Chin-Wen Liao, C. H. C. J. (2019). The interactivity of video and collaboration for learning achievement, intrinsic motivation, cognitive load, and behavior patterns in a digital game-based learning environment,. *Computers & Education*, 133, 43-55.
- Chiu, M. M., & Chow, B. W. Y. (2010). Culture, motivation, and reading achievement: High school students in 41 countries. *Learning and Individual Differences*, *20*(6), 579-592.
- Dunn, T. J., & Kennedy, M. (2019). Technology Enhanced Learning in higher education; motivations, engagement and academic achievement. *Computers & Education*, 137, 104-113.
- El Miniawi, H., & Brenjekjy, A. (2015). Educational Technology, potentials, expectations and challenges. *Procedia-Social and Behavioral Sciences*, *174*, 1474-1480.
- Fang, M., Gerhart, B., & Ledford Jr, G. E. (2013). Negative effects of extrinsic rewards on intrinsic motivation: More smoke than fire. *World at Work Quarterly*, 16(2), 17-29.
- Filsecker, M., & Hickey, D. T. (2014). A multilevel analysis of the effects of external rewards on elementary students' motivation, engagement and learning in an educational game. *Computers & Education*, 75, 136-148.

- Goodman, S. T. (2011, September). An Investigation of the Relationship between Students' Motivation and Academic Performance as Mediated by Effort. *South African Journal of Psychology*, *41(3)*, 373-385. https://doi.org/10.1177/008124631104100311
- Gopalan, V., Bakar, J. A. A., Zulkifli, A. N., Alwi, A., & Mat, R. C. (2017, October). A review of the motivation theories in learning. In *AIP Conference Proceedings (Vol. 1891, No. 1, p. 020043)*. AIP Publishing LLC.
- Gustad, A. R. (2014). The impact of technology tools on literacy motivation on elementary school English language learners: Podcasting in a 4th grade EAL class. *The International Schools Journal, 34*(1), 75.
- Hartnett, M., St George, A., & Dron, J. (2011). Examining motivation in online distance learning environments: Complex, multifaceted, and situation-dependent. *International Review of Research in Open and Distributed Learning*, 12(6), 20-38.
- Hayenga, A. C. (2010). Profiles of intrinsic and extrinsic motivations: A person-centered approach to motivation and achievement in middle school. *Motivationa and Emotion*, 34, 371–383.
- Hazrati-Viari, A., Rad, A. T., & Torabi, S. S. (2012). The effect of personality traits on academic performance: The mediating role of academic motivation. *Procedia-Social* and Behavioral Sciences, 32, 367-371.
- Hung, S. Y. D. M. M. (2011). The influence of intrinsic and extrinsic motivation on individuals' knowledge sharing behavior. *International Journal of Human-Computer Studie*, 69(6), 415–427. https://doi.org/10.1016/j.ijhcs.2011.02.004
- Isiksal, M. (2010). A Comparative Study on Undergraduate Students' Academic Motivation and Academic Self-Concept. *The Spanish Journal of Psychology*, 13(2), 572-585. https://doi.org/10.1017/S1138741600002250

- Jeno, L. M., Grytnes, J. A., & Vandvik, V. (2017). The effect of a mobile-application tool on biology students' motivation and achievement in species identification: A Self-Determination Theory perspective. *Computers & Education*, 107, 1-12.
- Jones, K. (2020, February 17). How Technology is Shaping the Future of Education. Visual Capitalist. Retrieved from

https://www.visualcapitalist.com/how-technology-is-shaping-the-future-of-education/

- King, J., & South, J. (2016). Reimagining the role of technology in higher education: A supplement to the national education technology plan. Office of Educational Technology.
- Kong, J. S. L., Kwok, R. C. W., & Fang, Y. (2012). The effects of peer intrinsic and extrinsic motivation on MMOG game-based collaborative learning. *Information & Management*, 49(1), 1-9.
- Kışoğlu, M. (2018). An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons. *International Journal of Higher Education*, 7(1).
- Kurt, S. (2015, November 18). *Educational Technology. educationaltechnology.net*. https://educationaltechnology.net/educational-technology-an-overview/
- Lee, J. Q., McInerney, D. M., Liem, G. A. D., & Ortiga, Y. P. (2010). The relationship between future goals and achievement goal orientations: An intrinsic–extrinsic motivation perspective. *Contemporary Educational Psychology*, 35(4), 264-279.
- Lei, S. A. (2010). Intrinsic and extrinsic motivation: evaluating benefits and drawbacks from college instructors' perspectives. *Journal of Instructional Psychology*, *37 (2)*, 153.
- López-Fernández, D. E. (2019). Motivational impact of active learning methods in aerospace engineering students. *Acta Astronautica*.

https://doi.org/10.1016/j.actaastro.2019.09.026

- Lemos, M. S., & Veríssimo, L. (2014). The relationships between intrinsic motivation, extrinsic motivation, and achievement, along elementary school. *Procedia-Social and Behavioral Sciences*, 112, 930-938.
- Lister, M. (2015, December). Gamification: The effect on student motivation and performance at the post-secondary level. *Issues and Trends in Educational Technology*, *3*(2).
- Mekler, E., Brühlmann, F., Opwis, K., & Tuch, A. (2013b). Do points, levels and leaderboards harm intrinsic motivation? An empirical analysis of common gamification elements. In *Proceedings of the First International Conference on gameful design, research, and applications*, 66-73. https://doi.org/10.1145/2583008.2583017
- Oudeyer, P. Y., Gottlieb, J., & Lopes, M. (2016). Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. In *Progress in brain research*, 229, 257-284. Elsevier.
- Papadakis, S., & Kalogiannakis, M. (2017). Mobile educational applications for children: what educators and parents need to know. *International Journal of Mobile Learning* and Organisation, 11(3), 256-277.
- Partovi, T., & Razavi, M. R. (2019). The effect of game-based learning on academic achievement motivation of elementary school students. *Learning and Motivation*, 68, 101592.
- Pilcher, A. (2018). 4 Great Apps to Help Students with Focus and Motivation. *EmergingEdTech*.

https://www.emergingedtech.com/2018/08/apps-help-students-with-focus-motivation/

Reed, P., & Reay, E. (2015). Relationship between levels of problematic Internet usage and motivation to study in university students. *Higher Education*, 70(4), 711-723.

- Reinhold, F., Hoch, S., Werner, B., Richter-Gebert, J., & Reiss, K. (2020). Learning fractions with and without educational technology: What matters for high-achieving and low-achieving students?. *Learning and Instruction*, 65, 101264.
- Rockich-Winston, N., Train, B. C., Rudolph, M. J., & Gillette, C. (2018). Faculty motivations to use active learning among pharmacy educators. *Currents in Pharmacy Teaching and Learning*, 10(3), 277-284.
- Rogstadius, J., Kostakos, V., Kittur, A., Smus, B., Laredo, J., & Vukovic, M. (2011, July). An assessment of intrinsic and extrinsic motivation on task performance in crowdsourcing markets. In *Fifth International AAAI Conference on Weblogs and Social Media*.
- Ross, S. M., Morrison, G. R., & Lowther, D. L. (2010). Educational technology research past and present: Balancing rigor and relevance to impact school learning. *Contemporary Educational Technology*, 1(1), 17-35.
- Shaheen, S., Nighat Perveen, N., & Malikz, S. K. (2013). Motivational techniques for effective learning: a meta analysis motivational techniques for effective learning: A meta analysis. *Elixir International Journal*, 64, 19170-19176.
- Sheehan, R. B. (2018). Associations Between Motivation and Mental Health in Sport: A Test of the Hierarchical Model of Intrinsic and Extrinsic Motivation. *Frontiers in psychology*, *9*, 707.
- Shin, N. S. (2012). Effects of game technology on elementary student learning in mathematics . *British journal of educational technology*, 43(4), 540-560.
- Thomson, P., & Jaque, S. V. (2017). *Personality and motivation*. Cambridge: Academic Press. https://doi.org/10.1016/B978-0-12-804051-5.00012-3

- Vincent, V. T., & Kumar, M. S. (2019). Motivation: meaning, definition, nature of motivation. *International Journal of Yogic, Human Movement and Sports Sciences*, 4(1), 483-484.
- Wormington, S. V. (2012). A person-centered investigation of academic motivation and its correlates in high school. *Learning and Individual Differences*, 22(4), 22(4), 429–438. https://doi.org/10.1016/j.lindif.2012.03.004
- Xue, Y., Gu, C., Wu, J., Dai, D. Y., Mu, X., & Zhou, Z. (2020). The effects of extrinsic motivation on scientific and artistic creativity among middle school students. *The Journal of Creative Behavior*, 54(1), 37-50.
- Yanguas, M. L. (2020). Technology and educational choices: Evidence from a one-laptop-per-child program. *Economics of Education Review*, 76, 101984.
- Yardimci, F. B. (2017). A study of the relationship between the study process, motivation resources, and motivation problems of nursing students in different educational systems. *Nurse Education Today*, 48, 13–18. d https://doi.org/10.1016/j.nedt.2016.09.017